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A B S T R A C T   

We describe how we are creating a new and comprehensive R library solving the problem of exact sample size 
determination of RCTs. A crucial prerequisite for the trial protocol is a priori sample sizes that bound the test size 
below a target (often 5%) and the test power above a target (often 80%). Approximate formulas are available for 
binary trials but the target test size and power are often violated by standard methods for even quite large sample 
sizes. Moreover, adjusting standard tests to take account of their size bias can reduce power substantially. This 
has been well known for several decades. Exact and quasi-exact tests are now available and can be computed in a 
few seconds for a single data set. However, calculating the exact power and size of such tests requires computing 
them for all possible outcomes. Searching for minimum samples sizes that achieve a given target requires doing 
this for a wide range of sample sizes. This becomes computationally infeasible very quickly; to compute required 
sample sizes for a target size of 5% and power of 80% would, on a standard computer, take several months. 
Computation time increases as the size and clinically relevant difference decreases. After having presented the 
main operative challenges to creating this library, mainly due to the need of summarizing a very large amount of 
information, we put forward our innovative solutions to deal with this complex problem from a statistical 
viewpoint. The described library will be released in open source.   

1. Introduction 

Consider a two-arm randomized clinical trial (RCT), where n par
ticipants are randomized into two groups of size n1 (experimental 
treatment) and n0 (control treatment). The unknown probabilities of 
target binary response are p1 and p0 respectively. The researcher chooses 
a minimal clinically relevant therapeutic difference δ = p1 − p0 as well as 
the a priori target test size α* and power β*. We aim to determine 
minimal sample sizes n0, n1 that meet these targets. 

Define Y1 and Y0 as the number of participants with a positive 
response in the two groups. Without loss of generality, any test can be 
defined in terms of a so-called p-value statistic P(Y0,Y1) and the rule 
“reject the null hypothesis if P(Y0,Y1) < α”. Standard theory [1–3] based 
on a central limit approximation to the distribution of the Wald statistic 
leads to approximate minimum sample size formulas such as 

|δ|=Z1− α*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(1− p)(1/n0+1/n1)

√
+Zβ*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(p0+δ)(1− p0 − δ)/n1+p0(1− p0)/n0

√
.

(1)  

where p = (n0p0 + n1p1)/n, Zq is the upper standard normal q-quantile. 
For given p0 and clinical difference δ one then finds a range of solutions 
for n0 and n1. 

The problem is that the approximate test that this theory is based on 
can grossly violate the target error rates α* and so the target power is 
achieved, if at all, at the expense of inflated size. One can potentially 
correct this by computing the exact upper critical value of the test sta
tistic, or equivalently by computing the exact worst-case significance of 
the test result. However, as explained below this can lead to loss of 
power. What clinicians need is a powerful test that always satisfies the 
type 1 error restriction and then required sample sizes to achieve the 
power target. 

The main aim of this article is to explain the computational impos
sibility of doing this in real time and to describe the process of creating a 
new and comprehensive R library that gives the exact power and size of 
a quasi-exact test for a large range of sample sizes and effect sizes. This 
can be used to extract optimal sample sizes and/or to create a smaller 
library of sample sizes that achieve target error rates and provided 
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directly to researchers. Both will be open source. 

2. Why exact? 

Required sample sizes clearly depend on the test employed. A less 
powerful test procedure will require larger sample sizes. We also require 
excellent size control, since a test that violates the type 1 error bound 
will achieve the target power under false pretences. And as Eq. (1) above 
shows, the target sample sizes are quite sensitive to the size of the test. 

Our library is based on what we call E p-values [4,5], explained in 
detail in the next section. Tests based on E p-values have size very close 
to nominal, for all possible values of the unknown response probability 
p0. In contrast, asymptotic tests have poorer size control than is typically 
appreciated. Maximization accounts for the non-pivotality of the test 
statistic but at the expense of power compared to the E p-value, which is 
very close to pivotal and almost exact, and so does not require any 
maximization in practice. 

While violations often occur for post-hoc unlikely values of the 
nuisance parameter this makes no difference in the frequentist frame
work. The left plot in Fig. 1 (from Lloyd [6]) describes the standard t-test 
for sample sizes n1 = 47 and n0 = 283 and the particular outcome y1 =

14 and y0 = 48. There is nothing special about these numbers except that 
the outcome of the experiment is in the “interesting range”: the realised 
value of T is 2.0874 and the approximate p-value is PT = 0.0185. The left 
plot shows Pr(T ≥ 2.0874), or equivalently Pr(PT ≤ 0.0185) as a function 
of the common probability ψ of response, computed exactly using the 

underlying joint binomial distribution. 
The true probability is as large as 0.0611. The estimated value of ψ is 

the vertical line and gives the estimated p-value of 0.0239. This is what 
we call the E p-value. The E p-value itself is a statistic and we can 
calculate the probability of it being equal or smaller than its observed 
value. This profile is displayed as the flatter curve. It is uniformly close 
to the quoted value of 0.0239 for all values of ψ . So should we quote 
0.0239 or 0.0611? 

The right-hand plot compares the p-value based on taking the 
maximum of the T profile (which is called the M p-value) with the E p- 
value, across all possible data sets. For almost every data set, the E p- 
value is smaller than the M p-value. Since both control size, the E p-value 
is superior. It will have greater power for the same size. The uniformity 
of this power dominance has been studied in Lloyd [7]. 

It is worth remarking that the size violations of approximate tests 
persist for quite large sample sizes whereas size violations of E p-values 
are practically negligible for all sample sizes. A striking graphical 
display of the size accuracy of T compared to the E p-value across a range 
of sample sizes may be found in Fig. 2 of Lloyd [8] reproduced below. 

The horizontal axis is sample size (a small 2 × 2 table is being 
multiplied up by a factor m). The vertical scale is the relative size in
accuracy. The x symbols are worst violation. The ordinary points are 
average absolute size error. The left plot is for the standard likelihood 
ratio test. A value of 1 means the actual size is 100% larger than nom
inal. Even for a multiplier of 200 (where total sample size is around 
1000) you can have 20% maximum size bias. The right plot is for the E p- 

Fig. 1. From Lloyd [6]. Left. Observed profile Pr(T ≥ 2.0847;ψ) (thick curve), where T is the pooled T-statistic (score) and ψ is the common probability of success. 
Vertical dashed lines are the 99% confidence interval for ψ. The horizontal dashed line is the asymptotic p-value. Right. (for details see explanation in the text). 

Fig. 2. From Lloyd [8]. Accuracy (average relative error and maximum relative error) for the standard likelihood ratio test (left) and for the E test (right). (for details 
see explanation in the text). 
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value. The maximum of the vertical axis is 0.05 meaning a 5% violation 
of nominal size. For instance, we claim it is 5% but it is actually 5.25%. 
With a sample size multiplier of 20 the maximum size violation is around 
1%. 

In summary, size violation is still an important problem for 
approximate tests for moderate sample sizes and this has consequences 
for required sample size calculations. Allowing for the erratic profile of 
the standard p-value leads to power loss. We use the E p-value because it 
has excellent size and power properties. And it is required samples sizes 
for this choice of test that are to be computed. 

3. A new library for sample size computation 

We denote the probability of any event under the joint binomial 
model for Y0, Y1, by Prn0, n1( |π), where the “event” is indicated as 
“blank”, π = (p0,p1). Let π̂0 denote the restricted ML estimate under the 
null hypothesis. For this article, the null hypothesis is p0 = p1 and π̂0 =

(p̂, p̂), where p̂ is the total responses over total sample size. For testing 
non-zero differences, the restricted ML estimate involves solving a cubic 
equation [9]. The so-called E p-value is then given by 

P̂(y0, y1) = Prn0 ,n1

{

P(Y0,Y1) ≤ P(y0, y1) |π̂0

}

(2) 

The quasi-exact E p-value is very close to pivotal, which means that it 
achieves the stated size almost exactly. Computing P̂

(
y0, y1

)
for a single 

data set (y0,y1) requires computing all possible values of the approxi
mate p-value P(y0,y1) which involves N = (n0 + 1)(n1 + 1) evaluations. 
In our previous example where the E p-value was 0.0239 and was read 
off the “profile” plot, computing the plot itself require computing all N 
= 11,472 possible values of the T statistic. If P(y0,y1) is monotonic in y0, 
y1 however we do not have to compute all possible values to determine 
the tail set in (2). We can instead make use of bisection [6] to reduce the 
expected evaluations of the T-statistic to N* = nminln(nmax) = 265. Even 
without this computational trick, computing a single realisation of 
P̂
(
y0, y1

)
is apparently instant for sample sizes of the order of a hundred 

and takes a few seconds for samples sizes of the order of five hundred. 
To compute the exact error rates of the quasi-exact test based on the 

rule “reject the null hypothesis if P̂(Y0;Y1) < α*” requires computing all 
possible values of P̂(Y0;Y1) which is a computation of order O(N* × N). If 
the experimental arms n0, n1 are both of order O(n), then this is a 
computation of order O(n3 log n) at best. This cannot be done in a few 
seconds. For n = 50 it takes about 8 s while for n = 500 it takes over four 
hours. This order of computation does not assume equal allocations; 
none of these do, though N depends on n0 and n1 and is largest when they 
are equal. 

Clinicians need a tool that provides the minimum sample sizes n0, n1 
for their planned trial, from provided values δ, α*, β* as well as a likely 
value p of the control probability p0 of response in the control group. The 
exact power of the test is 

β = Prn0 ,n1

{
P̂(Y0, Y1) ≤ α* |π = (p, p+ δ)

}
(3)  

depending on n0, n1, α*, δ and p. Of course, when δ = 0 this is the size, 
which we denote α. Once all possible values of P̂(Y0,Y1) have been 
calculated, which is a O(n3 log n) computation, calculation of the exact 
errors rates are only O(N) and can be done quickly for a grid of values of 
p, δ and α*. But each different sample size pair (n0,n1) requires another O 
(n3 log n) computations. 

Depending on the application, the samples sizes need not be equal so 
the problem is to determine minimum values of the control sample size 
N0(n1) as a function of the treatment sample size such that 

N0(n1) = min{n0 : β(n0, n1) ≤ β* ,α(n0, n1) ≤ α* } (4) 

It is known from extensive numerical work [4,10] that, for the E p- 

value, the actual size α is extremely close to the target error rate α*, this 
being illustrated in the earlier example and the source of the label 
“quasi-exact”. So, the second inequality restriction can be practically 
ignored. The set of solutions depends on provided values p, δ, α*, and β*. 

3.1. Computational challenge 

Because it is not feasible to compute β(n0,n1,p,δ,α*) for practical 
values of n0, n1 in real time, it is not feasible to allow users to specify p, δ, 
α*, β* and then search for a set of solutions N0(n1) as defined in (4). The 
only practical approach is to store values of β (and less critically α) for a 
practical but restricted grid of values for p, δ, α* for all values of n0, n1 
within a practical range. 

The first challenge is to get everything relevant into our data base, so 
as to support any reasonable query from the user about planned sample 
size. While in the context of RCTs we can be quite restrictive in terms of 
choice of α and β values, there being commonly established standard for 
target size and power, it is important to leave flexibility over sample size 
combinations n0, n1, as well as allowing for background knowledge of 
the control response probability p0. The second challenge is that the final 
library of results should not be so large that (a) it can never be stored in 
available packages and (b) extraction of results in real time for the user 
from the package becomes prohibitively slow. The least important third 
challenge is that creating this final library of results should be executable, 
by the authors of this article, in a practical time scale for a research 
project. 

3.2. Practical solution 

As our approximate p-value P(y0,y1) on which the E p-value is based 
we adopt the standard normal approximation to the signed likelihood 
ratio statistic, which is straightforward to compute though perhaps less 
well-known than the standard T statistic. However it has some guaran
teed and important monotonicity properties [11]. This choice has almost 
no impact on the resulting quasi-exact p-value P̂(Y0,Y1) [4]. Indeed, it is 
an attractive property of E p-values that they hardly depend at all on the 
initial choice of the user’s favourite test statistic. 

We start by setting a restricted range for both sample sizes, currently 
25 to 500. This can be extended in the future though the computational 
effort to do so will be extreme. For each pair (n0,n1), we first compute all 
possible values of P̂(Y0,Y1). For smaller sample sizes, this is fast. But 
computation time grows quickly with sample size as we have seen. For 
both sample sizes equal to 500, it takes over 4 h on the fastest desktop 
machine that we have available. 

We compute exact size α and power β for the following grid of 
parameter values: δ = 0,0.05,0.1,0.2, target type 1 error α* 
=0.005,0.01,0.02,0.025,0.05,0.10, and control group probabilities in 
increments of 0.01 from 0 up to 1 − δ. The power results can be added 
into a table for each of the 2214 parameter combinations of p, α*, δ just 
described. 

We do not store the E p-values however, as their total number across 
all sample sizes from 25 to 500 will end up being 60,591,902 (details 
available on request). There are very few computing environments that 
could interrogate a data base of this size, certainly not R-Studio. 

At the end of this process, we have 2214 exact powers for each pair of 
sample sizes (n0, n1) within the designated range. Constructing this li
brary, even breaking the project into 20 parallel sets of computations on 
different machines, requires several months of computation. 

Once this library of power data has been accumulated by the re
searchers, it can be used to compute minimum sample sizes N0(n1) by 
solving (4) subject to n0, n1 ≤ 500. If there is no solution then we return 
the value N1(n0) = 500 indicating no solution and a larger sample size 
than 500 required. The solution vectors N0(n1) depend on p, α*, δ but 
also depends on the target type 2 error β* which we will limit to four 
possible values. There are thus 2214 × 4 = 8856 solution vectors that 
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need to be stored. This is a very manageable amount of data both to 
download and to be interrogated by the clinician. More likely than a 
single value p, clinicians will likely give a range R of values for p. In this 
case, one need only extract the solution vectors N0(n1) for discrete values 
of p ∈ R and report the largest. 

4. Some clarifying illustrative plots 

It is simple to show that the exact power β satisfies 

β(n0, n1, p, δ) = β(n1, n0, 1 − p,δ)

so it is sufficient to calculate powers for n0 < n1 and fill in the results for 
n0 > n1 using the above symmetry. A confirmatory plot is in the left 
panel of Fig. 3 which shows the exact size of the E p-value based test with 
α* = 0.05 and sample sizes n0 = 50, n1 = 35 in black. The worst-case size 
is extremely close to the target 5% and this is typical of the E p-value 
based test. The exact size of the test with sample sizes n0 = 35, n1 = 50 is 
displayed as a solid red line. 

To give an idea of the process involved in extracting optimal sample 
sizes, suppose a user sets α = 0.1, β = 0.2, δ = 0.2. For illustration, we 
imagine that both sample sizes are limited to the range 25 to 100. We 
can do this because we know that there will be many solutions within 
this range for this favourable choice of α, β and δ. This will not be the 
case for smaller values and a useful database will need to allow for much 
larger sample sizes. 

With sample sizes limited to 100, there are 762 = 5,776 distinct 
values of n0, n1, each with 81 powers corresponding to 0:0.8(0.01). For 
each pair of samples sizes, we calculated the power, minimised over the 
81 values of p. This would be appropriate if the user had no prior in
formation on p. The right image plot shows those values where the 
minimised power exceeds the 0.8 threshold. As anticipated, it is sym
metric about the axis n0 = n1. Because of the peculiarities of integer 
arithmetic, the boundary of this region is irregular and is also consid
erable shifted from the approximate solutions mentioned in the 
introduction. 

Practitioners will want a range of “smallest” solutions, i.e. for fixed 
values of n0 the smallest value of n1 that achieves the target power. 
There may also be a target range for the balance ratio γ = n1/n0. A 

typical “balance” restriction is highlighted by the blue lines within 
which the ratio is between 2/3 and 3/2. Because of the earlier 
mentioned symmetry in (n0,n1) a search would only be required be
tween the blue line and the line of symmetry. 

Searching the table can be done very quickly. It is the creation of a 
table covering larger sample sizes that, in principle, will currently take 
several months of computing. Allowing sample sizes up to 500 will in
crease the number of samples size combinations from 5776 to 226,576. 
However, this will not make the search algorithm impractical. It is the 
computing burden for filling out the entries of the table itself that will be 
increased by a factor 53ln(500)/ln(100) = 168. Increasing from 500 to 
1000 increases total computation to create the expanded table by a 
factor of 8.89. 

5. Conclusion 

Exact calculations of sample sizes are performed in other software, 
for instance PASS. However, when sample sizes become moderate, they 
resort to normal approximations because of the computational burden. 
We have pointed out that these approximations are unsuitable for 
determining sample sizes that are guaranteed to satisfy size and power 
targets. StatXact also has an algorithm for exact sample sizes, but based 
on the pooled t-test. For each pair of sample sizes, this is only an O(N) 
computation. Our library is based on the quasi-exact E p-value because 
of its distinctly superior power properties as explained in this article. 
This makes the computational burden O(N2). Another package PASS 
explicitly resorts to normal approximation based methods as soon as 
sample sizes become moderately large, and are in any case based on the 
pooled t-test. 

The final package available online will load a structured library of 
powers for a range of values of α, δ, p and n0, n1 as described in Section 
2.2. The user will supply target values α*, β*, a clinically relevant dif
ference δ, a range of values of p and an optional balance restriction on 
n0/n1. Importantly, the package will also include a function for calcu
lating the E p-value after experimental results are obtained, as well as the 
exact size and power of the test if target sample sizes are not met. This 
should ensure that the researcher uses the test that the sample size 
calculations are based on. 

There may also be a possibility to select an alternative approximate 

Fig. 3. Illustrative plots. Left. Exact size α for n0 = 50, n1 = 35 (black) and n0 = 35, n1 = 50 (red). Worst case type 1 error is almost exactly equal to nominal α* =
0.05. Right. Image plot of exact power minimised with respect to p for α* = 0.1, β* = 0.2 and δ = 0.2. Balance boundaries are in blue, axis of symmetry in black. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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p-value (default: LR), for instance the more standard Wald or T statistic 
based p-value; however, a large amount of research shows that this 
choice has almost no effect. There will also be optional filtering for an 
expected dropout rate. A search algorithm will then find smallest sample 
sizes N0(n1) as displayed in (4). 

In conclusion, this work will provide clinical trialists with an R li
brary that can immediately furnish the required sample size, allowing 
them to set different parameters values at the same time facilitating their 
use of a more powerful test with guaranteed properties. 

Declaration of competing interests 

There are no competing interests related to this submission 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cct.2021.106491. 
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